Search results for "COLOR GLASS CONDENSATE"

showing 10 items of 26 documents

Structure of longitudinal chromomagnetic fields in high energy collisions

2014

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial fields correspond to a color field condensate exhibiting domain-like structure over distance scales of order the saturation scale. At later times universal scaling emerges at large distances for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop to the two-point correlator of magnetic fields.

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial like structure over distance scales of oder the saturation scale. At later times universal scaling emerges at large distances for all ensembles with a nontrivial critical exponent. Finally we compare the resulats for the Wilson loop to the two-point correlator of magnetic fields. (C) 2014 The Authors. Published by Elsevier BV This is an open access article under the CC BY licenseNuclear and High Energy PhysicsWilson loopLARGE NUCLEINuclear TheoryField (physics)FOS: Physical sciences114 Physical sciences01 natural sciencesColor-glass condensateRENORMALIZATION-GROUPNuclear Theory (nucl-th)GLUON DISTRIBUTION-FUNCTIONSHigh Energy Physics - Phenomenology (hep-ph)Light cone0103 physical sciencesSCATTERINGGauge theory010306 general physicsSMALL-XEffective actionPhysicsCORRELATORSta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATERenormalization groupEVOLUTIONJIMWLK EQUATIONHigh Energy Physics - PhenomenologySATURATIONQuantum electrodynamicsCritical exponentPhysics Letters B
researchProduct

Forward dijets in proton-nucleus collisions at next-to-leading order: the real corrections

2021

Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the "real" next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in our previous paper. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO …

High Energy Physics - Theorydijet: productionNuclear and High Energy PhysicsParticle physicsNuclear TheoryProton[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]splittingFOS: Physical sciencescollinearParton01 natural sciencesColor-glass condensateNuclear Theory (nucl-th)DGLAP equationHigh Energy Physics - Phenomenology (hep-ph)FactorizationfactorizationNLO Computations0103 physical sciencesRadiative transferEffective field theoryradiative correctionlcsh:Nuclear and particle physics. Atomic energy. Radioactivitypartonheavy ion phenomenology010306 general physicsp nucleus: scatteringPhysicsNLO computationshybrid010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]higher-order: 1Heavy Ion PhenomenologyGluonHigh Energy Physics - PhenomenologyDGLAPHigh Energy Physics - Theory (hep-th)kinematics[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensatelcsh:QC770-798
researchProduct

Evolution of fluctuations in the initial state of heavy-ion collisions from RHIC to LHC

2019

Fluctuations in the initial state of heavy-ion collisions are larger at RHIC energy than at LHC energy. This fact can be inferred from recent measurements of the fluctuations of the particle multiplicities and of elliptic flow performed at the two different energies. We show that an analytical description of the initial energy-density field and its fluctuations motivated by the color glass condensate (CGC) effective theory predicts and quantitatively captures the measured energy evolution of these observables. The crucial feature is that fluctuations in the CGC scale like the inverse of the saturation scale of the nuclei.

heavy ion: scatteringScale (ratio)Field (physics)Nuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesColor-glass condensateHigh Energy Physics - ExperimentNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)010306 general physicsinitial stateNuclear ExperimentNuclear ExperimentBrookhaven RHIC CollPhysicsLarge Hadron Collider010308 nuclear & particles physicsfluctuationelliptic flowparticle: multiplicityElliptic flowObservableHigh Energy Physics - PhenomenologyCERN LHC Coll[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensateParticlescale: saturation
researchProduct

Use of a running coupling in the NLO calculation of forward hadron production

2018

We address and solve a puzzle raised by a recent calculation [1] of the cross-section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an un- reasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by one to two orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artefact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to mo…

Position and momentum spaceQCD EVOLUTION01 natural sciencesAsymptotic freedomquantum chromodynamics: correctionhard scatteringHigh Energy Physics - Phenomenology (hep-ph)coupling constant: energy dependencestrong interaction: coupling constantEQUATIONkvanttifysiikkaComputingMilieux_MISCELLANEOUSPhysicsQuantum chromodynamicsQUARKhigher-order: 1nuclear physicssddc:12.39.StHigh Energy Physics - Phenomenology12.38.Bxsymbolsydinfysiikkahadron: forward productionFOS: Physical sciences114 Physical sciencesRENORMALIZATION-GROUP12.38.Cysymbols.namesakeCross section (physics)Theoretical physicsquantum chromodynamics0103 physical sciencessirontarelativistic heavy-ion collisionCoordinate spacenumerical calculations010306 general physicsp nucleus: scatteringcorrection: higher-orderCouplingta114010308 nuclear & particles physics25.75.-qCOLOR GLASS CONDENSATENONLINEAR GLUON EVOLUTIONRenormalization groupFourier transformasymptotic freedom[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physical Review D
researchProduct

Thermalization in the initial stage of heavy ion collisions

2017

The high density non-abelian matter produced in heavy ion collisions is extremely anisotropic. Prethermal dynamics for the anisotropic and weakly coupled matter is discussed. Thermalization is realized with the effective kinetic theory in the leading order accuracy of the weakly coupled expansion. With the initial condition from color glass condensate, hydrodynamization time for the LHC energies is realized to be about 1 fm/c, while the thermalization happens much later than the hydrodynamization. peerReviewed

PhysicsthermalizationLarge Hadron Colliderta114010308 nuclear & particles physicsPhysicsQC1-999heavy ion collisionsHigh density01 natural sciences7. Clean energyColor-glass condensateNuclear physicsThermalisationChemical physics0103 physical sciencesKinetic theory of gasescolor glass condensatehydrodynamizationInitial value problemHeavy ion010306 general physicsAnisotropyQuark Confinement and the Hadron Spectrum
researchProduct

Single inclusive forward hadron production at next-to-leading order

2016

We discuss single inclusive hadron production from a high energy quark scattering off a strong target color field in the Color Glass Condensate formalism. Recent calculations of this process at the next-to-leading order accuracy have led to negative cross sections at large transverse momenta. We identify the origin of this problem as an oversubtraction of the rapidity divergence into the Balitsky-Kovchegov evolution equation for the target. We propose a new way to implement the kinematical restriction on the emitted gluons to overcome this difficulty.

QuarkParticle physicssingle inclusive hardon productionNuclear TheoryHadronFOS: Physical sciencescolor glass condensate formalism01 natural sciencesColor-glass condensateNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)Balitsky-Kovchegov evolution0103 physical sciencesRapidityfysiikka010306 general physicsPhysicsta114010308 nuclear & particles physicsScatteringGluonTransverse planeHigh Energy Physics - PhenomenologyEvolution equationphysics
researchProduct

Forward J / ψ and D meson nuclear suppression at the LHC

2017

Abstract Using the color glass condensate formalism, we study the nuclear modification of forward J/ψ and D meson production in high energy proton-nucleus collisions at the LHC. We show that relying on the optical Glauber model to obtain the dipole cross section of the nucleus from the one of the proton fitted to HERA DIS data leads to a smaller nuclear suppression than in the first study of these processes in this formalism and a better agreement with experimental data.

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Colliderta114010308 nuclear & particles physicsNuclear TheoryquarkoniaHERABalitsky-Kovchegov equationDeep inelastic scattering01 natural sciencesColor-glass condensateNuclear physicsDipole0103 physical sciencesD mesoncolor glass condensateHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsGlauberNuclear and Particle Physics Proceedings
researchProduct

Saturation and forward jets in proton-lead collisions at the LHC

2019

We investigate the forward-jet energy spectrum within the Color Glass Condensate framework at 5 TeV center-of-mass energy. In particular, we focus on the kinematic range covered by the CMS-CASTOR calorimeter. We show that our saturation-model calculations are compatible with the CASTOR measurements and that to optimally reproduce the data, effects of multi-parton interactions need to be included. We predict a significant nuclear suppression - reaching down to 50% at the lowest considered jet energies $E_{\rm jet} \sim 500 \, {\rm GeV}$.

nucl-thNuclear TheoryRAPIDITIESAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNUCLEARhiukkasfysiikka01 natural sciences7. Clean energy114 Physical sciencesColor-glass condensateNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEnergy spectrumJ/PSI PRODUCTION010306 general physicsSaturation (magnetic)Nuclear theoryINELASTIC EP SCATTERINGParticle Physics - PhenomenologyPhysicsLarge Hadron Collider010308 nuclear & particles physicsCOLOR GLASS CONDENSATEhep-phHADRON-PRODUCTIONDEUTERON-GOLD COLLISIONSHigh Energy Physics - PhenomenologyNuclear Physics - TheoryHigh Energy Physics::Experiment
researchProduct

One-loop corrections to light cone wave functions: the dipole picture DIS cross section

2018

We develop methods needed to perform loop calculations in light cone perturbation theory using a helicity basis, refining the method introduced in our earlier work. In particular this includes implementing a consistent way to contract the four-dimensional tensor structures from the helicity vectors with d-dimensional tensors arising from loop integrals, in a way that can be fully automatized. We demonstrate this explicitly by calculating the one-loop correction to the virtual photon to quark-antiquark dipole light cone wave function. This allows us to calculate the deep inelastic scattering cross section in the dipole formalism to next-to-leading order accuracy. Our results, obtained using …

small-xNuclear TheoryGeneral Physics and AstronomyVirtual particleFOS: Physical scienceshiukkasfysiikka01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)Dimensional regularizationHigh Energy Physics - Phenomenology (hep-ph)Light cone0103 physical sciencesTensorHelicity basis010306 general physicskvanttifysiikkaPhysicsDISta114010308 nuclear & particles physicsHelicityLoop integralQCDEVOLUTIONlight-cone perturbation theoryDipoleHigh Energy Physics - PhenomenologyQuantum electrodynamicsREGULARIZATIONcolor glass condensate
researchProduct

On the use of a running coupling in the calculation of forward hadron production at next-to-leading order

2019

saturationcolor glass condensatehiukkasfysiikka
researchProduct